Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration

نویسندگان

  • Aniruddha C. Amrite
  • Henry F. Edelhauser
  • Swita R. Singh
  • Uday B. Kompella
چکیده

PURPOSE Our previous studies indicated that while 20 nm particles are rapidly cleared from the periocular space of the rat following posterior subconjunctival injection, 200 nm particles persisted for at least two months. To understand faster clearance of 20 nm particles, the purpose of this study was to determine transscleral permeability and in vivo disposition in the presence and absence of circulation. Further, it was the purpose of this study to simulate sustained retinal drug delivery after periocular administration of rapidly cleared and slowly cleared nanoparticles. METHODS The permeability of 20 and 200 nm particles over 24 h was examined across isolated bovine sclera and sclera-choroid-RPE with or without a surfactant (Tween 20, 0.1% w/v) added to the preparation. The in vivo disposition of nanoparticles was performed using Sprague Dawley rats. The rats, either dead or alive, were administered with 400 microg of the nanoparticles in the periocular space, and the particle disposition in the eye tissues was assessed 6 h later. To evaluate the role of the reticulo-endothelial system and lymphatic circulation, isolated liver, spleen, and cervical, axillary, and mesenteric lymph nodes were analyzed using confocal microscopy. Mathematical simulations with Berkeley Madonna were used to evaluate the effect of nanoparticle size on retinal drug levels following periocular administration. Celecoxib was used as the model drug and the finalized pharmacokinetic model from a previous study was used with some modifications for the simulation. RESULTS Transport of 20 nm particles across sclera in the presence and absence of the surfactant were 0.1%+/-0.07% and 0.46%+/-0.06%, respectively. These particles did not permeate across the sclera-choroid-RPE in 24 h. There was no quantifiable transport for 200 nm particles across the sclera or the sclera-choroid-RPE. In live animals, the 20 nm particles were undetectable in any of the ocular tissues except in the sclera-choroid following periocular administration; however, in dead animals, the particle concentrations in the sclera-choroid were 19 fold higher than those in live animals, and particles were detectable in the retina as well as vitreous. The retention of 20 nm particles at the site of administration was two fold higher in the dead animals. In live animals, the particles were clearly detectable in the spleen and to a very low extent in the liver as well. The particles were also detected in the cervical, axillary, and mesenteric lymph nodes of the live animals. Simulations with two particles (20 nm and 200 nm) with different clearance rates demonstrated that the retinal drug levels were affected by particle clearance. Larger nanoparticles sustained retinal drug delivery better than smaller nanoparticles. With an increase in drug release rate from the particles, these differences diminish. CONCLUSIONS The 20 nm particles are transported across the sclera to a minor degree; however, there is no significant transport across the sclera-choroid-RPE. Periocular circulation (blood and lymphatic) plays an important role in the clearance of the 20 nm particles. The higher particle levels in the ocular tissues in the post-mortem studies indicate a dynamic physiologic barrier to the entry of particles into the ocular tissues after periocular administration. The particle size of the delivery system can play an important role in the observed retinal drug levels after periocular administration. Slow release nanoparticles with low clearance by blood and lymphatic circulations are suitable for prolonged transscleral drug delivery to the back of the eye.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decrease of Serum Vascular Endothelial Growth Factor, along with its Ocular Level, after the Periocular Injection of Celecoxib and Propranolol in Streptozotocin-induced Diabetic Mouse Model

Background: There is a direct correlation between ocular vascular endothelial growth factor (VEGF) level and progression of pathological outcomes in diabetic retinopathy. In our previous study, the periocular administration of propranolol and celecoxib could significantly reduce ocular VEGF levels in a diabetic mouse model. Here, we investigated the changes of serum VEGF after ...

متن کامل

Study on Fe3O4 Magnetic Nanoparticles ‎Size Effect on Temperature Distribution ‎of Tumor in Hyperthermia: A Finite ‎Element Method ‎

   In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...

متن کامل

Synthesis and tissue distribution of CoFe2O4 Nanoparticles Coated with DMSA in rats liver

Objective(s): According to the unique properties of magnetic nanoparticles, their usages in medicine and industry have increased in the last decade. Due to the vital role of liver in the body, the accumulation of CoFe2O4 and CoFe2O4@DMSA was studied. Materials and Methods:The nanoparticles were synthesized by co-precipitation method and were coated with DMSA. The techniques XRD, TEM, DLS, FTIR,...

متن کامل

Distribution of propranolol in periocular tissues: a comparison of topical and systemic administration.

PURPOSE Oral propranolol has become a promising treatment of capillary hemangiomas (CHs) despite concerns of side effects associated with systemic beta-blockers. The objective of this study was to investigate the distribution of propranolol in periocular tissues and in plasma after topical application of propranolol as compared with intravenous and oral administration of propranolol. METHODS ...

متن کامل

Effect of dispersion state of the magnetic Fe3O4 nanoparticles on the thermal distribution in Hyperthermia

Introduction: Magnetic nanoparticle (MNP) hyperthermia is a promising cancer treatment approach. It is based on the evidence that by injecting MNPs such as Fe3O4 in the tumor and subjecting them to an alternating magnetic field, they release heat, generating temperatures up to 42°C that can kill cancer cells by apoptosis, usually with lowest damage to normal tissue. In previous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular Vision

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2008